Displaying items by tag: LightNumberland engineering consultancy for new processes, new materials. New processes: We analyse, optimize and document processes often not covered by quality management handbooks and teach them to run. We translate technical demands into physical effects or properties and then find the suitable material.http://www.coating-materials.de/index.php/offers/itemlist/tag/Light2016-07-01T08:27:55+02:00Joomla! - Open Source Content ManagementBetter materials for better LEDs2015-10-03T22:07:04+02:002015-10-03T22:07:04+02:00http://www.coating-materials.de/index.php/get-in-contact/item/1505-better-materials-for-better-ledsAdministratorgrond@numberland.de<div class="K2FeedImage"><img src="http://www.coating-materials.de/media/k2/items/cache/474d52ab97f559cf97024390d286c9cc_S.jpg" alt="Better materials for better LEDs" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Better materials for better LEDs</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-01</p> <p>Keeping great promises for reduced energy usage and high conversion efficiencies, lighting fixtures with solid-state light sources have the possible to revolutionise the lighting industry. Additional improvements in light-emitting efficiency at high currents, with excellent color making at low expense would considerably speed up the widespread uptake of the technology. A new project is investigating the materials for these improved lighting products by developing new large-area semi-polar templates utilizing sapphire and silicon substrates. These semipolar templates help reduce the inbuilt electric fields in LEDs which affect their color security and effectiveness and supply a big area, low cost platform for the growth of the LED levels. The task is additionally making use of the indium aluminium gallium nitride (InAlGaN) material for the light-emitting layers, focusing on blue and yellow emission. A major challenge is patterning of the wafer to produce and coalesce semi-polar planes on the structured sapphire substrate. To this end, experts are assessing the impact of substrate fine orientation and growth parameters through X-ray measurements, luminescence and atomic-scale imaging. Metalorganic and hydride vapour phase epitaxy are used to develop levels on the substrates. The active light-emitting material comprises of quantum wells that have actually large optical efficiency and excellent color purity. Project partners used the HVPE technique to overgrow GaN on top of a GaN layer grown by MOVPE that had been at first prepared on pre-structured sapphire. InGaN layers had been then grown on semi-polar GaN templates with various growth conditions. Semi-polar InGaN structures with different thicknesses had been optimised, reaching large transformation light-emitting efficiencies in the blue and yellow spectra. A move from growing products on semi-polar substrates is assisting to overcome issues related to decrease in LED light-emitting efficiency. Changing present lighting technologies with solid-state lighting based on InGaN LEDs should enable a decrease in electrical energy by up to 5 %.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>LED</li><li>Light</li><li>Source</li><li>Optics</li><ul></div><div class="K2FeedImage"><img src="http://www.coating-materials.de/media/k2/items/cache/474d52ab97f559cf97024390d286c9cc_S.jpg" alt="Better materials for better LEDs" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Better materials for better LEDs</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-01</p> <p>Keeping great promises for reduced energy usage and high conversion efficiencies, lighting fixtures with solid-state light sources have the possible to revolutionise the lighting industry. Additional improvements in light-emitting efficiency at high currents, with excellent color making at low expense would considerably speed up the widespread uptake of the technology. A new project is investigating the materials for these improved lighting products by developing new large-area semi-polar templates utilizing sapphire and silicon substrates. These semipolar templates help reduce the inbuilt electric fields in LEDs which affect their color security and effectiveness and supply a big area, low cost platform for the growth of the LED levels. The task is additionally making use of the indium aluminium gallium nitride (InAlGaN) material for the light-emitting layers, focusing on blue and yellow emission. A major challenge is patterning of the wafer to produce and coalesce semi-polar planes on the structured sapphire substrate. To this end, experts are assessing the impact of substrate fine orientation and growth parameters through X-ray measurements, luminescence and atomic-scale imaging. Metalorganic and hydride vapour phase epitaxy are used to develop levels on the substrates. The active light-emitting material comprises of quantum wells that have actually large optical efficiency and excellent color purity. Project partners used the HVPE technique to overgrow GaN on top of a GaN layer grown by MOVPE that had been at first prepared on pre-structured sapphire. InGaN layers had been then grown on semi-polar GaN templates with various growth conditions. Semi-polar InGaN structures with different thicknesses had been optimised, reaching large transformation light-emitting efficiencies in the blue and yellow spectra. A move from growing products on semi-polar substrates is assisting to overcome issues related to decrease in LED light-emitting efficiency. Changing present lighting technologies with solid-state lighting based on InGaN LEDs should enable a decrease in electrical energy by up to 5 %.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>LED</li><li>Light</li><li>Source</li><li>Optics</li><ul></div>